
LOCALIZATION PROJECT, ROBOTICS NANODEGREE PROGRAM, UDACITY 1

Where AM I?
Beshari Jamal

Abstract—Two different wheeled robot models were considered for performance evaluation. The robots were different in size, weight
and wheel diameters. Using the Robot Operating System (ROS) and its packages, the robots were virtually constructed and launched
in a simulation, then had its sensors and links finetuned for localization and navigation with a predefined map. The robots were lastly
evaluated to reach a predefined goal position and goal orientation.

Index Terms—Robot, IEEEtran, Udacity, LATEX, Localization.

F

1 INTRODUCTION

ROBOT localization is one of the essential functions of a
mobile robot. It is the ability to ascertain its position

and orientation in a frame of reference. A robot uses that
information for path planning. Without accurate localization
information, a robot path planning is always faulty and
could be fatal and costly.

There are three different kinds of localization problem:
position tracking also know as local localization, global
localization where the initial pose is not known, and the
kidnapped robot, where the robot is moved somewhere else
without it knowing. Probabilistic techniques such as Kalman
Filters, Grid localization and, Monte-Carlo Localization are
used to localize the robot using a sensor rangefinder, and a
predefined map. The map provided by Clearpath Robotics
in Gazebo simulation environment. In this project, Adaptive
Monte-Carlo localization (AMCL) method and extended
Kalman Filter (EKF) are discussed.

The move base package is used as part of the navigation
stack. The package produces a local cost map using the
range finder sensor, as the robot progress, ,making the
local cost map move to another global cost map (Clearpath
Robotics map) to implement a smooth path.

2 BACKGROUND

While the first industrial robot was invented in 1961 [6],
ROS only started serving the public in early 2007, developed
since the mid-2000s in Stanford University, then finally
made public by help from Willow Garage, a visionary
robotics incubator [2].

2.1 ROS
ROS is a robotics middleware. A middleware is a software
that mediates between a piece of software or an application
and a network. It manages the interaction between the var-
ious applications across the complex computing programs.
”Robotic middleware is designed to manage the complexity
and heterogeneity of the hardware and applications, pro-
mote the integration of new technologies, simplify software
design...” [3]. ROS is composed of a set of tools and libraries
made by scientists and roboticists, that aims to simplify
the task of creating or recreating complex and robust robot
behavior across a wide variety of robotic platforms.

2.2 ROS Navigation Stack
ROS Navigation Stack is a powerful ROS tool for mobile
robots to move from one place to another. The navigation
stack, given by processing data from odometry, sensor
streams, and environment map, plans a global path and
local path manifested as velocity commands to the mobile
base. The ROS Navigation Stack can be imported through
ROS, however, to maximize the performance of the navi-
gation stack the probabilistic parameters need some fine-
tuning.

2.3 Localization Methods
The main two localization methods considered for the
robots are the Kalman Filters and particle filters.

2.3.1 Kalman Filters
Kalman Filters is an estimation algorithm that is promi-
nent in controls. It is used to estimate a variable such
as speed or location in real-time as other data including
noise is being collected. Kalman filter gets its popularity
from being able to make very accurate estimations given a
considerable amount of noise input. It works on a two-step
process: measurement update and state prediction. First, an
initial guess is used as a first state prediction, measurement
update happens, then lastly a control action may happen
in such as a manifestation of movement, then the cycle
starts again at state prediction. Given the assumptions that
motion and measurement models are linear and state space
can be represented by a Gaussian distribution, the Kalman
filter converges to an accurate solution. Unfortunately, most
mobile robots execute non-linear motion such as moving in
a curve. This fact makes KF unsolvable in closed-form - in
a finite number of operations - and more computationally
intensive. A linear approximation to any nonlinear function
can be drawn using Taylor Series on the mean, and then the
resulted linear function can be used in KF, this methodology
is known as Extended Kalman Filter.

2.3.2 Particle Filters
Particle Filters use particles to localize the robots. Each
particle represents a guess of where the robot may be located
and has a position and orientation. These particles are
assigned probability weights and re-sampled each time the



LOCALIZATION PROJECT, ROBOTICS NANODEGREE PROGRAM, UDACITY 2

robot makes a measurement or control update. The unlikely
particles are then weeded out.

2.3.3 Comparison / Contrast
While both Kalman Filters and Particle filters accurately
localize robots after few iterations. KF is used mainly in
linear measurement and motion models, that is why KF is
mostly used in guidance, navigation, and control in vehicles
notably aircraft and spacecraft. KF can, for example, predict
(value and covariance) using dead reckoning (information
from various sensors such as gyro sensor and accelerometer)
and measurement update with GPS data. However, particle
filters are widely used because it can approximate almost
any state space distribution, easy to implement and robust
against noise. Particle filters can also be changed to use
fewer particles, hence providing control over memory and
resolution. Because our robots move with a differential
controller, therefore moves in curvy lines, adaptive Monte
Carlo localization (amcl), an example of particle filters, is
used for localization.

3 SIMULATIONS

The simulation was carried out using the Robot Operating
System (ROS), Gazebo and Rviz (3D visualization tool for
ROS). Rviz data shows sensor data and custom visualization
model such point cloud data, map, robot models.

3.1 Achievements
Two robots were written in Unified Robot Description For-
mat (URDF). The corresponding ROS packages were written
to launch two custom robots in Gazeboo world. AMCL
ROS packages and other plugins were utilized to connect
the sensors, odometry, and control for the end goal of
localization and navigation. Both robots were able to localize
themselves and navigate to predefined goals.

3.2 Benchmark Model
The benchmark robot as seen on figure 1, is a simple robot
with two driving wheels on the sides and two caster wheels
at the front and the back of the robot. The range sensor and
camera are stacked on top of each other at the front of the
robot.

3.3 Personal model
The personal model robot is a similar robot as seen on figure
2, with two driving wheels on the sides two caster wheels
at the front and the back of the robot. The range sensor and
camera are in the middle of the front half of the robot. The
robot is lighter, has a broader and thinner base and smaller
wheels in diameter.

3.3.1 Packages Used
The same packages were used for both robot models.

The move base package implements some kind of action
that, given a goal, will attempt to reach it with a mobile
base. The move base node connects a global and local
planner to accomplish its global navigation task move base
publishes on ”cmd vel” a stream of velocity commands

Fig. 1. Bench Mark Model

Fig. 2. Personal Model

meant to be executed. Amcl package also has a make plan
clear unknown space and clear costmaps services.

The amcl package is probabilistic localization system to
track the pose of a robot against a known map. Amcl pub-
lishes a pose and a point cloud of poses on ”particlecloud.”
Amcl has global localization which initializes a space set
with uniformly distributed random pose particles, and re-
quest nomotion update, a service to manually refresh and
publish updated particles.

3.3.2 Parameters

In the amcl package, there are three types of parameters:
”min particles” and ”max particles”, unmistakably from



LOCALIZATION PROJECT, ROBOTICS NANODEGREE PROGRAM, UDACITY 3

their names, control the number of virtual particles used
in the amcl package.

”transform tolernece” is the time with which to postdate
the localization transform. It only needs to be high enough
to cover the lag in the system.

Finally: ”odom alpha1”, ”odom alpha2”,
”odom alpha3”, and ”odom alpha4” are noise parameters
in differential drive mobile robots. They correspond to
expected noise in odometry translational or rotational
estimate from each of the robot’s translational or rotational
motions.

TABLE 1
amcl Parameters Table

Parameter name Benchmark personal
min particle 15 10
max particle 100 70

transform tolerence 0.4 0.8
odom alpha1 0.01 0.001
odom alpha2 0.01 0.01
odom alpha3 0.05 0.05
odom alpha4 0.05 0.05

The ”move base” package interfaces with sensory infor-
mation, cost maps, local and global planner. Hence it is
expected to have parameters that are involved with all of
these.

There are three types of parameters of characteristic
parameters in the local map and global map package:

Ranger finder related: ”obstacle range” and ”ray-
trace factor” parameters determine the radius in which the
local map of the robot is cleared. The ”obstacle range” is the
distance obstacles can be sensed within.

”robot radius” and ”inflation radius” parameters are
used by the ”move base” package to plan paths far enough
from obstacles and walls.

”move base” has a local planner that has its parameters.
Local planner parameters are mostly self-explanatory and
control the kinematics of the robot; ”max vel x” is the
maximum velocity in the x-direction and ”acc lim theta”
is the rotation acceleration limit.

some useful parameters to mentions are: ”holo-
nomic robot” is a boolean that is true if the robot degrees
of freedom is the same as the maximum possible degree
of freedom. ”sim time” is the amount of time to forward-
simulate trajectories.

”vx samples” and ”vtheta sampples” are the numbers
of samples to use when exploring the x velocity space or the
theta

4 RESULTS

As seen in Both robots reached their end goal in a local-
ization and navigation challenge. It is found that when the
robots are in the radius of inflation of the walls, they escape
very slowly. Besides, both robots may start by going the
other direction until there is enough space for the local
planner to plan a U-turn. Nevertheless, reaching their goals
and following their global plan conclusively.

TABLE 2
move base Parameters Table

Parameter name Benchmark Personal
obstacle range 3 2.5
raytrace range 3.5 3.0

transform tolerence 0.4 0.5
robot radius 0.3 0.3

inflation radius 0.2 0.3
coast scaling factor 2.5 3

max vel x 0.6 0.75
min vel x 0.1 0.1

max vel theta 1.0 1.0
acc lim theta 2.5 2.7

acc lim x 2 2.5
acc lim y 0 0

holonomic robot false false
sim time 5 5

controller frequency 6.0 7.0
vx samples 15 20

vtheta samples 30 40
yaw goal tolerence 0.2 0.2
xy goal tolerence 0.1 0.1

4.1 Localization Results

Both robots are able to localize themselves once able to
follow the global plan.

4.1.1 Benchmark

The Udacity robot was able to localize itself shortly after
starting moving. The move base package was therefore able
to plan the right trajectory to its end goal position as shown
in figure 3

Fig. 3. Benchmark Model Reaching Final Goal

4.1.2 Student

The personal robot was also able to localize itself. The robot
reaching its final goal position can be seen in figure 4



LOCALIZATION PROJECT, ROBOTICS NANODEGREE PROGRAM, UDACITY 4

Fig. 4. Personal Model Reaching Final Goal

4.2 Technical Comparison

The two robots are similar in architecture but different
in size, wheel diameters, the locations of sensors, caster
wheels, and finally the base’s shape and weight. Both robots
as seen in figures 1 and 2 were close in performance, with
the bench mark being more stable. Yet the personal model
reached the goal faster.

5 DISCUSSION

Fig. 5. Personal Model at start of simulation

The robots performed satisfactorily localizing them-
selves and reaching their end goal positions. Both robots
are experts in going on straight lines or following smooth
curves, yet under harsher tests, it is found that both robots
get lost not finding any control solution, and failing to make
U-turns sometimes. the robot also gets slow when they are
in the a higher-cost area, especially at beginning during
their discovery phase, where the Monte Carlo localization

Fig. 6. Personal Model completing a straight path

Fig. 7. Personal Model turning around a corner

is determining the robots initial location. However, within
the project scope, both robots perform well.

The typical implementation of AMCL is inadequate in
solving the kidnapped robot problem on its own, however
superior in the global localization challenge. The difference
is that when the robot is kidnapped, it believes it is some-
where that is not, and there may bot surviving amcl particles
in the new location. At the time, this could be solved
by resting the particles and starting again. There are also
many alternate proposed solutions such as continuously
augmenting the particles with another uniform particles or
introducing more noise than there is. Still, the first used
method is the mixture Monte Carlo Localization. The differ-
ence between the two is that the MCL algorithm first guesses
using odometry and then assigns importance weights using
sensor data, the Mixture-MCL algorithm, besides, guesses
new poses based on sensor data and assigns weights based
on odometry. Bringing a disadvantage of the mixture Monte
Carlo Localization algorithms being a requirement for a
sensor model that allows fast sampling of poses. Kd-trees
is usually utilized as a data structure solution for such
rangefinder sensor data.

ROS can be deployed to any ARM-based micro-
controller with Linux installed, sensors can be interfaced
using Rviz and the robot directly. When deploying this type
of projects to real hardware, mobile robots require to be



LOCALIZATION PROJECT, ROBOTICS NANODEGREE PROGRAM, UDACITY 5

light with limited power. This limitation means that efficient
use of processing is of utmost importance as it is directly
correlated to power usage. The higher the processing, the
less time a robot is active.

Therefore, while adding more sensors and resolution can
produce a high-quality map, it also employs more sensors
and processors to unnecessary extremes. Careful attention
should be paid to how the robot is sensing and process-
ing the surroundings, and whether a high-quality map is
needed or a robot (such as the Romba) does just fine with a
minimalist 2D map.

6 CONCLUSION / FUTURE WORK

After successful fine tuning, localization and navigation.
The project can be deployed to hardware.

For future work,The robot current camera can be used as
a depth camera to take in more sensor data, consequently
an obstacle detection algorithm can be implemented. in
addition, More work on software would make the robot able
to map the environment with SLAM.

REFERENCES

[1] David L. Anderson, Jeremy Gottlieb, 2013 Introduction to Robotics,
ROBOTS: IN THE BEGINNING. http://www.mind.ilstu.
edu/curriculum/medical robotics/robots in beginning.php
Accessed: June 18, 2018.

[2] Open Source Robotics Foundation, 2017 ROS: History. http://
www.ros.org/history/ Accessed: June 18, 2018.

[3] Ayssam Elkady, Tarek Sobh, 2012 Robotics Middleware: A Com-
prehensive Literature Survey and Attribute-Based Bibliography. https:
//www.hindawi.com/journals/jr/2012/959013/ Accessed: June
18, 2018.

[4] Udacity, 2017 Robotics Software Engineer Nanodegree Program:
Term2: Localization. https://www.udacity.com/ Accessed: June
18, 2018.

[5] Open Source Robotics Foundation, 2017 ROS: amcl. http://wiki.
ros.org/amcl Accessed: June 18, 2018.

[6] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Del-
laer, 2001 Robust Monte Carlo Localization for Mobile Robots. http:
//robots.stanford.edu/papers/thrun.robust-mcl.pdf Accessed:
June 18, 2018.


