Moveit Config interface investigation

Reference: https://moveit.picknik.ai/main/index.html

]
Rviz Plugins J Raw Action |

_—-_H-H-F'_]
\+__,_,-"'
-

Move Group =+——

|
\
/ >{ Planning Pipeline
/
L] e
Trajectory Execution Manager] A L~ T
- VW Ll o '\"{9
e
Covanant Hamiltomdan Opan Modon Planning
Cpbmization Lity

o,

Te—
—

SBPL
‘Search-Based
Plaming Library

Fromimity Callizon
Detecion

MOVEIT2 package gives more capability and functionality for serial manipulators
Based on Figure 1. We need to develop or outsource the grey rectangles
these are dependencies that need to be met: PCD, FCL, CHOMP, OMPL, SBPL And the

controllers.
The solvers (: PCD, FCL, CHOMP, OMPL, SBPL) above are already existent as plugins.

https://moveit.picknik.ai/main/index.html

Upcoming work:

e Investigating controllers

e Making Moveit Config. Using Moveit Setup Assistant
Moveit on low lever controllers

Investigating controllers (using ROS2_CONTROL)

Relevant links:
Ros2 control home
ROSCON2023 workshop ros2control on steroids

[]
e Ros2_control demos and examples
e Simulator integration with ros control

Existent nodes and topics

Using rqt-graph, all circles are nodes, and rectangles are topics
The current existent configuration in DexHand:
Joint state publisher with USB serial:

ransform_lstener_Imp|_56468d9¢6930

Zoomed view of the usb_serial, the current configuration

ler fdexhand_hw_command fusb_serial

fdexhand_hw_response

Af_static

floint_states

/robot_description

Desired change to usb_serial:

https://moveit.picknik.ai/humble/doc/examples/setup_assistant/setup_assistant_tutorial.html
https://moveit.picknik.ai/humble/doc/examples/controller_configuration/controller_configuration_tutorial.html
https://control.ros.org/master/index.html
https://github.com/ros-controls/control.ros.org/blob/master/doc/resources/ROSCon2023_Workshop_ros2_control_on_Steroids.pdf
https://github.com/ros-controls/ros2_control_demos
https://control.ros.org/master/doc/simulators/simulators.html

J/dexhand_hw_command

Jloint_states

Gesture controller, with usb_serial:

ros2ll_daemon_0_1cT61479d26340c48dr790ee91aT2

Idexhand_gesture

/dexhand_finger_extension

Idexhand_hw_response

fgesture_controller

Idexhand_hw_command

Irobot_state_publisher
Iransform_istener_impl_S517f3d64750

Irat_gui_py_node 1233468

Pretty interesting to read about ROS2 workshop

Prework to ROS2_control
e Setup the firmware through usb_serial to subscribe to joint angles from (joint_state
type message) and act accordingly
[J
Steps to get ROS2_control working
e Create a YAML file with the configuration of the controller manager and two
controllers.
o Textbook Example
o Schunk ros driver example
o You only need to worry about the structure of the yaml file, controller
selection, its parameters ...
o :_position controller, effort_controllers, and velocity__controllers. Then a
trajectory controller, which is a layer on top, sends (position or velocity) joint
space commands over time to the driver.

http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/JointState.html
http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/JointState.html
https://github.com/ros-controls/ros2_control_demos/blob/master/example_1/bringup/config/rrbot_controllers.yaml
https://github.com/SCHUNK-SE-Co-KG/schunk_svh_ros_driver/blob/main/schunk_svh_driver/etc/controller_default.yaml
https://control.ros.org/master/doc/ros2_controllers/position_controllers/doc/userdoc.html
https://control.ros.org/master/doc/ros2_controllers/effort_controllers/doc/userdoc.html
https://control.ros.org/master/doc/ros2_controllers/velocity_controllers/doc/userdoc.html
https://control.ros.org/master/doc/ros2_controllers/joint_trajectory_controller/doc/userdoc.html

o Explanation: The ros2_control has a_standard controller collection and
configurable controller hierarchy, that can be specified based on a yaml file.
Then the package controllers get (summoned) accordingly, and the YAML file
includes parameters such as PID and motor limits etc for each controller.
Extend the robot's URDF description with needed <ros2_control> tags. Using macro
files (xacro) instead of pure URDF is recommended. (Example URDF for RRBot).
o Text example
o Chunk ros2 hand example (why not)
“Create a launch file to start the node with Controller Manager. You can use a default
ros2_control node (recommended) or integrate the controller manager in your

software stack”. (Example launch file for RRBot).

Appendix next page:

https://control.ros.org/master/doc/ros2_controllers/doc/controllers_index.html#available-controllers
https://github.com/ros-controls/ros2_control_demos/blob/master/example_1/description/ros2_control/rrbot.ros2_control.xacro
https://github.com/SCHUNK-SE-Co-KG/schunk_svh_ros_driver/blob/ros2-humble/schunk_svh_driver/urdf/schunk_svh_driver.xacro
https://github.com/ros-controls/ros2_control_demos/blob/master/example_1/bringup/launch/rrbot.launch.py

Appendix

e Other hand control stacks:

Allegro, has two controllers, PD, and velocity saturation joint controller, Allegro
seems to have developed their own ‘custom’ controller, written 10 years ago (ROS1)
leapHand: custom controller, control it by publishing joint states. Leap hand
currently does not have it moveit!, current control is directly through joint space.
Shadowhand: used pr2 control mechanisms, which is the basis for ros_control

(ros1), from the following image. They have many interfaces but mainly use the joint
space publisher interface: (particularly in the Open Al Rubic cubecase).

Controller Manager

—
‘]S publisher ‘ ‘ PosControllers ‘ o
* X
Hardware Resource Layer T
“a
JointsState interface | JntPos if. | | ntvel if. ‘ JNtEFf if. ‘ ‘ RobotState if.
update() RosEtherCAT (RobotHW) v \\u
"""" EtherCATmodel ppdate()
Joint Limits = (Joints) \ \,\
— \
\
EtherCATmodel N
] (Actuator) \ "\
i \ |
/ / | write() read() | |
/ fake_state points to | | ‘I
/ model_state directl updated) _ ‘ |‘ ‘l
pda -

[T |

{updatechild() - \ it ‘l ‘\
‘ Fake Joints ‘ EtherCAT HW ‘ ‘ Custom HW ‘ \reo)
Gazebo ‘77/L>posFromPhysics() ,/:lnpack()
loop

2 read()
> {
effToPhysics() /

‘

EtherCAT
loop

pack()/

- 7),,,/9{ Gazebo Hand ‘
updatePhysics()

A
‘ Real Hand ‘ ‘

https://github.com/simlabrobotics/allegro_hand_ros/tree/master/allegro_hand_controllers
https://github.com/leap-hand/LEAP_Hand_API/blob/main/ros_module/ros_example.py

	Moveit Config interface investigation
	Upcoming work:
	Investigating controllers (using ROS2_CONTROL)
	Existent nodes and topics

	Appendix

